
Copyright Red Centre Software 2008 Page 1 of 25

Automating Continuous Tracking:

The Ideal System

Delivered at Association for Survey Computing conference:

Getting the Message Across – Automating and

Communication Survey Results

Imperial College, London, October 2008

© 2008. Protected by International Copyright law. All rights reserved worldwide.

Version: 25 September 2008

[minor edits March 2009]

[minor edits September 2009]

No part of this document may be reproduced or distributed

in any form or by any means - graphic, electronic, or

mechanical, including, but not limited to, photocopying,

recording, taping, email or information storage and retrieval

systems - without the prior written permission of Red Centre

Software Pty Ltd.

Copyright Red Centre Software 2008 Page 2 of 25

AUTOMATING CONTINUOUS TRACKING

This document outlines the essential steps for job setup, data processing, and reporting

of continuous tracking jobs, emphasing strategies and techniques for maximising the

level of automation.

AUTOMATING CONTINUOUS TRACKING .. 2

Introduction... 3

Dynamism .. 3

Managing Change - A New Brand ... 3

Managing Change - A New Bank of Variables ... 4

Heteromorphicity – A Continuous Tracking Job as Shape-Shifter .. 6

Error Detection .. 6

Interactivity .. 7

Achieving Automated Throughput – the Bare Minimum ... 8

The Principles .. 8

1. Maximum Generality ... 8

2. Immutable Definitions ... 8

3. Absolute Consistency ... 9

4. Total Retention ... 9

5. Don’t Bloat ... 9

6. Super-Actions Always .. 9

7. The Benito Principle ... 9

8. Hyper-defensivity .. 9

General Work Practices ... 10

Document the Job ... 10

Maintain a Variable Map, Variable Names ... 10

Brand Lists and Dynamic Code Frames ... 11

Log Each Update Step .. 12

General Software and System Requirements ... 12

Use Referencable Master Brand Lists.. 13

Create Named Code Lists ... 13

Map All Jobs to a Consistent Job Structure for Common Variables 14

Specification Generators .. 15

Disassembly of Constructions (Variable Ancestry) .. 16

Rollback ... 16

Scripting .. 16

Weight within Periods .. 16

Support External Data ... 17

True Calendar ... 17

Diagnostics ... 18

1. Audit Updates ... 19

2. Check Sum Reports ... 19

3. ZeroSumTest .. 20

4. Compare an Update to Average of Prior N Updates .. 21

5. Create charts which announce data errors .. 21

6. Variable Reports .. 23

Heteromorphism in Practice ... 23

Constructing .. 23

Lock Report Axes ... 24

Scripting ... 24

Reporting .. 25

Conclusion.. 25

Copyright Red Centre Software 2008 Page 3 of 25

Introduction

Why is continuous tracking (CT) so hard? Since ad hoc jobs are easy enough, why is a CT

job not just a series of ad hocs organised by time? Why do things keep going wrong?

Dynamism

Because the only point and purpose of CT is to respond to dynamism – in a static world,

a single ad hoc job would be enough for everything. But in a dynamic one, with evolving

markets, increasingly disparate trends in consumer behaviour, and an ever-shifting mix

of competitors and products, a single frame of the moving picture can be very deceptive.

Dynamism in the subject matter of a survey means that the survey instrument itself

must evolve over time, or become increasingly irrelevant. Failure to correctly manage the

job-wide implications of the evolution of the instrument is the paramount cause of

difficulties. In practice, a failure to manage dynamism and evolution (change) is often a

combination of poor work practices and inadequate software.

This paper posits the minimal work practices and software functionality required to

automate CT jobs as substantially as possible, and seeks to establish a set of underlying

principles which can govern decision making for all types of tracking studies.

Managing Change - A New Brand

A new brand comes on the market. The implementation tasks are listed on the left, and

the problems which could follow omission or mistakes are on the right.

Task Damage Risk

Edit the master questionnaire and log

the change

No metadata makes historical

interpretation in later years problematic

Consult the existing brand lists and

allocate a code

Reuse an existing code, thereby

destroying the data for both

Different codes will be used for the

same brand across different variables,

leading to DP chaos

Brief the interviewers (CATI) or script

writers (internet collection)

The wrong brand is asked for, or is

incorrectly coded or labeled

Confirm that the field service’s

collection system will capture and

validate the new code

Miss deadlines and incur the client’s

wrath as you try to sort out the mess

No data to assess a campaign start

Copyright Red Centre Software 2008 Page 4 of 25

Identify verbatims where the brand

could be mentioned, and brief the

coding department accordingly

The new brand will end up merged in

with Other or No Further Info – which

typically will go unnoticed for weeks.

The coders will give the brand an

arbitrary code, thereby breaking the

integrity of the master brand list and

creating DP chaos.

Add the new code and label to the

brand lists maintained in the DP house

system

Data is collected, but never processed,

ending up as Not Established or

Undefined

Check all the relevant variables which

store and decode the new data item

Source data will become internally

inconsistent

Check any constructions which net or

otherwise use the brand list

Analysis will become the pursuit of

strange anomalies

Consider all table and chart

specifications which use brand lists for

axes or for filters

Crosstab outputs will grow increasingly

awry until an analyst calls them out as

absurd (Coca-Cola at 5% share?),

usually sometime after the results have

already been reported to the client

Connect the new brand to the reporting

regime

Connects to the wrong brand label or

spreadsheet formula,

Client terminates account

Modify diagnostic reports to catch

issues arising in any of the above

All of the above, especially

Client terminates account

The worst case is a new parent brand, because that will require child brand codes to be

allocated too, each as per the above steps. The labour is large - hence the risk of

oversight, miscommunication, misunderstood instructions etc is high. Things will go

wrong – it is only a matter of time, and in my experience, not a lot of it.

Managing Change - A New Bank of Variables

As well as new codes to existing variables, often whole banks of new variables are

introduced, typically to assess things like the response to a heavy promotion, images

related to a new execution, an expansion into a new or related line of business,

unexpected actions by a competitor, or to implement a new measure for consumer

behaviour, and so on. For a new variable which categorises the brand list, then in

addition to the above implementation tasks and risks, we have

Task Risk

Provide a set of consistent variable

names

In lieu of specification, the

questionnaire nomenclature will get

used

Copyright Red Centre Software 2008 Page 5 of 25

Variables cannot be referred to

collectively, eg BLB_1 to BLB_99,

forcing many piece-meal actions

instead of a single general one

Decide on the descriptions which will

appear in the final reports

QB_12ax etc is meaningless to later

users of the data

Make sure that all parent brands have

exactly the same code across all

variables (tautology deliberate)

DP chaos

Make sure that all child brands have

exactly the same code across all

variables

Total DP chaos

Stitch up multi-response variable sets

(as per *.SAV) or logically hierarchic

data structures to discrete variables

‘...lest your variables grow to

outnumber the grains of sand or the

stars above’

Net variables as required (eg first or

other = total, aided or unaided = all)

Analysis will be compromised

Create new tables and charts Mis-labelled chart series, mis-specified

tables

Connect to the reporting regime Connects to the wrong brand labels or

spreadsheets or spreadsheet formulas,

Client terminates account

Create a set of diagnostic reports to

catch issues arising in any of the above

All of the above, especially

Client terminates account

Surely all this is obvious? Then why has the stuff in the right hand side happened to me

more times than I ever want to think about? Managing the introduction of a new brand

code (or any new code) or a new variable is a formal process, yet most companies doing

tracking work have never formalised the procedural steps, leaving those charged with

actually doing the work to make it up as they go along. With staff stability, eventually by

trial and error the procedures will become routine, but where there is a lot of mobility, no

sooner are the lessons learned than they are lost again. It can be hard to explain to

corporate clients why the same mistakes keep happening over and over again.

In the typical FMCG markets of the major global multinationals (P&G, Unilever, Kraft,

Gillette, McDonald’s etc), many new brands and variables can occur, sometimes many in

a single week. This can be especially true of fast food markets, where the notion of a

brand can be extended to a highly promoted menu variation which may be scheduled

only for a few weeks. Obviously, the automation of as many of the above steps as

possible would have a huge impact on productivity. Where automation is not possible

(such as in personal briefings or emailing instructions to field services or accurate coding

of verbatims), strict work practices must be observed. In either case, diagnostic routines

must be implemented to catch errors at the relevant points in the processing chain.

Copyright Red Centre Software 2008 Page 6 of 25

Heteromorphicity – A Continuous Tracking Job as Shape-
Shifter

To accommodate the above procedures for implementing new codes and variables

without being swamped by maintenance minutiae and an avalanche of errors a CT job

must be by nature heteromorphic – it must routinely and automatically transform itself

into different data shapes, where ‘data’ means a set of categorical or quantitative

variables, and ‘different’ means that both the membership of the set, and the internal

structure of the members of the set, can change at any time.

From the IT/DP and processing point of view, this requirement poses many challenges.

When I began working in CT for Sutherland Smith and MarketMind in the early 1990s,

the process was

Surveycraft tables -> Lotus 123 -> Harvard Graphics

Strangely, now nearly 20 years later, the standard process is

Quantum tables -> Excel -> PowerPoint

Under the work flow procedures above for adding new brands and variables, there are

many manual steps involved in getting from the source data processing to table

specifications through to spreadsheet formulas and references, and then finally

connecting to charts. Often the chart step is manual copy/paste, and often only the most

recent data is appended, so any existing errors will never be fixed, and new ones are

often introduced. Such systems (and the BI/RDB/OLAP oriented systems even more so)

are very brittle in the face of relentless dynamism. They are the antithesis of

heteromorphicity. They do not gracefully shape-shift to seamlessly accommodate

variations in the structure of the data set – rather, they must be bludgeoned into

submission, sometimes fatally.

Error Detection

Furthermore, such systems are opaque against any obviously wrong result. An error at

the charting stage can be very difficult to follow back through the spreadsheet

manipulations for percentaging and smoothing to the supplying bank of crosstabulations,

which are themselves often aggregated from complex networks of inter-related

constructions on the source variables. Diagnosis of an output error could take days (and

often did). And of course, the worse thought is always that given the obvious errors we

did fix, how many subtle ones are present we don’t know about? An analyst who reported

that Coca-Cola has a market share of 5% just because that is what the chart says would

be sacked. But what if the chart says 51% due to a netting error, when the correct value

is 49%? The difference is small, and either value is reasonable, but 49% for TCCC would

mean that Pepsi had finally got the upper hand in the cola wars – a big psychological

victory.

The sad truth is that for an analyst writing a report from just a deck of PowerPoint charts

and hard copy tables, there is no way to test the 49% vs 51% proposition – it is taken on

trust, and if later found to be incorrect, then hey, we can always blame DP.

It is better by far to not have any errors, but since continuous tracking and

heteromorphism are essentially interchangable concepts, at every update there is

Copyright Red Centre Software 2008 Page 7 of 25

potential for errors to creep in. Good work practices, thorough procedures, and

comprehensive diagnostics alone are not enough. Ultimately, an analyst who understands

the market must determine that either all results are within expectations, or if not, then

that the data trail is solid and that surprise results can be defended with confidence.

There is no point whatsoever in hypothesising about the market or consumers if the

reason is a DP or field error.

Interactivity

This means that the requirements for an ideal system of automated CT include,

paradoxically, full analytical interactivity. The responsible analyst/researchers must be

able, at a minimum, to remove/restore percentaging (1/2=50%, and 2/3=66.6%, but

both percentages are analytically meaningless), smooth/unsmooth at different levels,

unweight/reweight, filter/unfilter, test changes in series behaviour with piece-wise linear

regressions, and then, if there is a problem or some uncertainty, unravel constructed

variables, examine case data down to the source level and follow from first principles

exactly how each final table cell or plotted point was derived. If this cannot be achieved

then quality control will remain forever a fanciful and elusive concept. Wrong results will

inevitably be reported.

Copyright Red Centre Software 2008 Page 8 of 25

A more complete example:

Achieving Automated Throughput – the Bare Minimum

Achieving automated throughput is largely a matter of building on correct work practices

with appropriate software functionality. A minimal account is outlined below. There is

quite a bit more, not covered here, which would be essential in any practical sense for

heavy duty jobs.

The Principles

There are several principles which guide the underlying rationale. They are

1. Maximum Generality

Organise the job so that as many items as possible can be referred to as simply as

possible. A trivial example: referring to codes 1 to 10 is better done as 1/10 than as 1, 2,

3, 4, 5, 6, 7, 8, 9, 10 – ranges, not lists The more general the specifications, the less

text, and the less text, the fewer opportunities for error.

In terms of variables, this principle means that you should always work at the highest

levels of data abstraction – eg hierarchic and multi-response variables, not atomised

single response.

2. Immutable Definitions

Once a code is defined, or a variable named and described, it must never change.

Reports use codes in filters, constructions use codes in mappings, and so on. A change of

1=Coke to 1=Pepsi could destroy the job completely.

Copyright Red Centre Software 2008 Page 9 of 25

3. Absolute Consistency

Always use the same code for the same brand. Never do the same thing in different

ways. Thinking creatively is fine in terms of job setup, systems and procedures, but once

up and running, no variation should ever be admitted. If you want to change a

procedure, in view of the risk of messing with the current jobs, it is often better to wait

until the next new job comes along.

4. Total Retention

Keep all historical case data and all meta-data well organised and accessible. Ideally,

every single case from job inception, and all current and retired or suspended variables,

should be immediately accessible. Clients often want comparative analyses, sometimes

against very old campaigns, expressly to see how far they may have come over the

preceding years. Relying on IT to retrieve a job as constituted five years ago is a dicey

proposition. If the job is truly too huge and must be split, then do it yourself using

ordinary archiving technology.

5. Don’t Bloat

The consequence of the principle of Total Retention is that jobs get bigger and bigger,

and can never get smaller. Therefore, never add variables or files to the job without an

explicit point and purpose. Always consider whether it is better to construct on the fly as

part of a report specification. Only explicitly construct if usage will be frequent.

6. Super-Actions Always

Never do the same thing many times, because that enforces a linear commitment of time

and resources. An example would be filtering a set of reports – it is better by far to

specify a single global filter which applies to them all, than to be adding the same filter

expression to each report, one at a time.

Similarly, updating a PowerPoint deck should be an automatic process, initiated once in

constant time, regardless of how many slides or embedded reports.

Adding a new brand to many variables should be done once only and in one place only.

7. The Benito Principle

Organisational Fascism is essential. Military precision and discipline. No exceptions.

Mindlessly follow the procedures. Never break the rules. Never take a short cut. Never

put a bandaid on a data problem at the end of the chain (like direct edits of a PowerPoint

data sheet). Document everything. Keep scrupulous records. Make all individuals in the

chain personally accountable for the quality of the data handed on to the next step. Avoid

at all costs diffused responsibilities. Demarcate exactly. When things go wrong

accountability is paramount – otherwise the problem will not be properly fixed, and will

probably soon recur. The earlier in the chain a problem is found and fixed, the less

damage will be done.

8. Hyper-defensivity

Be totally paranoid. Think hyper-defensive. The attitude and expectation must be not just

‘what can go wrong, will go wrong’, but rather ‘what can go wrong, has already gone

wrong’. You just don’t know about it yet.

Copyright Red Centre Software 2008 Page 10 of 25

These principles are referred to as appropriate below.

General Work Practices

Document the Job

A poorly documented job is a disaster waiting to happen.

Maintain a Variable Map, Variable Names

The first step to setting up a smoothly running CT job is make sure that the source

variables are sufficient to deliver the required measures, that the variable names

conform to house standards, that brand and other abbreviations are locked down, that

standard descriptions for variables are supplied, and that there is a system for report

naming. This can all be done with a single document which I think of as the variable

map, because it maps out all the connections between the source variables, constructed

variables and reports. A typical sample covering just the standard brand and advertising

awareness measures (where AnyBrandX is a master list of all the variant codes for

BrandX, ditto AnyBrandY etc, see next subsection) is

Name Method Details Q’nr Description Report stem

Unaided Brand Awareness

TMBA source Q1a Top of Mind Brand Awareness TopMindBrandAwa

TMBAN Code net TMBA(AnyBrandX)=c1...

TMBA(AnyBrandY)=c2...

 Net Top of Mind Brand Awareness TopMindBrandAwaNet

UOBA source Q1b Unaided Other Brand Awareness UnaidOthBrandAwa

UOBAN Code net From UOBA, as per TMBAN,

UOBA&!TMBAN

 Net Unaided Other Brand

Awareness

UnaidOthBrandAwaNet

UBA Var net TMBA | UOBA Unaided Brand Awareness UnaidBrandAwa

UBAN Var net TMBAN | UOBAN Net Unaided Brand Awareness UnaidBrandAwaNet

Unaided Ad Awareness

TMAA source Q2a Top of Mind Ad Awareness TopMindAdAwa

TMAAN Code net TMAA(AnyBrandX)=c1... Net Top of Mind Ad Awareness TopMindAdAwaNet

UOAA source Q2b Unaided Other Ad Awareness UnaidOthAdAwa

UOAAN Code net From UOAA, as per TMAAN,

UOAA&!TMAAN

 Net Unaided Other Ad Awareness UnaidOthAdAwaNet

UAA Var net TMAA | UOAA Unaided Ad Awareness UnaidAdAwa

UAAN Var net TMAAN | UOAAN Net Unaided Ad Awareness UnaidAdAwaNet

Aided Brand Awareness

ABA source Q9a Aided Brand Awareness AidBrandAwa

Aided Ad Awareness

AAA source Q9b Aided Ad Awareness AidAdAwa

Awareness

UA Var net UBA | UAA Unaided Awareness UnaidAwa

UAN Code net UA(AnyBrandX)=c1... Net Unaided Awareness UnaidAwaNet

AA Var net ABA | AAA Aided Awareness AidAwa

A Var net UAN | AA Awareness Awa

The variable map must attain a god-like status. Under the Benito Principle, failure to

follow it exactly should incur a severe reprimand. Otherwise, you end up with a great

jumbled mess of individual preferences for names, abbreviations and descriptions, and

no reference point to determine that the constructions have been correctly specified and

implemented. That sort of thing is a fertile breeding ground for errors, and makes job

navigation difficult for analysts.

A well-maintained variable map can do the job of many other documents, so it should

entail less work overall. A date field for new variables would handle the change log

function. The details column instructs DP on how to construct. The Report column tells

analysts how to name the charts and tables. You can always add to the stem according

to other conventions, such as UnaidedAwa_males, or AidedAdAwa_kraft. Together with

Copyright Red Centre Software 2008 Page 11 of 25

an additional document to specify banners and weightings, the variable map can remove

the need for a dedicated ‘tab plan’ or similar.

You can exercise creativity in devising your own conventions and naming schemes and

the layout of the map, but once determined and agreed, the map must be followed

exactly – no exceptions, not ever, for any reason.

Note that the six source variables (Q1a,b, Q2a,b, Q9a,b) create twelve constructed

variables. Two to one is a typical construction:source ratio. It is always important to keep

the number of constructions under control. A CT job can never shed a variable, so adding

new ones should always be an agreed necessity among the users of the job. Otherwise,

over time you will end up with a lot of useless baggage.

Note that my naming convention reduces the name width as more respondents are

covered at the greater levels of generality, leading finally to just the variable A, which is

the net of all the awareness variables.

In my experience, systems which use named variables, as opposed to fixed-width column

references, are best for CT. A variable circumscribes and packages its own data, whereas

column references are meaningless on their own, and the columns often shift around. For

CT, the flexibility to call any subset of columns anything you like is not necessarily a

positive.

Brand Lists and Dynamic Code Frames

Allocation of codes should be done from a position of knowledge about the job and its

composite variables, and from a position of sufficient authority to ensure compliance. A

well maintained set of brand variables will all share exactly the same code frame, and the

code frame itself should be designed with some understanding of the natural groupings.

In a worst case scenario of thousands of variant brands across several parents, and with

new variants appearing regularly, it is sensible to group the parents in blocks so that

they can all be picked up by a single range expression, leaving plenty of room for the

years ahead. There is an infinity of integer codes, so there is no reason to be squeezed

for space. A good initial arrangement for such a market would be

Parent Brands Variant Brands

Kraft=1 Kraft=1001/1999

Unilever=2 Unilever=2001/2999

Heinz=3 Heinz=3001/3999

The variants breakdown in the full list would be something like

1001=(Kraft) Cheddar Cheese

1002=(Kraft) Vegemite

...

2001=(Unilever) I Can’t Believe it’s not Butter

2002=(Unilever) Ben and Jerry’s

...

3001=(Heinz) Baked Beans (tomato sauce)

3002=(Heinz) Bean Samosa

...

Copyright Red Centre Software 2008 Page 12 of 25

Note that codes 1/1000, 2000 and 3000 are sacrificed. This is so that the brand codes

always take four digits (keeping banks of filters much better aligned for readability), so

that the parent and the variant brands can always have the same leading digit (‘1’=Kraft,

‘2’=Unilever...), and so that boundary problems are avoided (the ‘first’ is always a

trailing ‘1’, never a ‘0’, eg 1001, and not 1000).

Now, at the commencement of the job there might only be 100 or so variants defined for

each parent, but if all syntax expressions which need to pick up all parent codes always

use the full range, then an important aspect of heteromophicity is implicitly

accommodated. A filter expression like UBA=1001/1999 will be true regardless of how

many variants have been defined, at least until such time as the number of Kraft variant

brands in the market category exceeds 999 (in which case, see Named Code Lists

below).

At all costs, under the principle of Absolute Consistency, you must avoid mismatches

between codes and brands like this (first instance in bold):

UBA – Unaided Brand Awareness

Kraft variant A = 1

Kraft variant B = 2

Kraft variant C = 3

UAA – Unaided Ad Awareness

Kraft variant A = 3

Kraft variant B = 4

Kraft variant C = 1

Heinz variant A = 2

On these code frames, a construction for Unaided Awareness would have to be

UA – Unaided Awareness

 1 = Kraft variant A = (UBA=1 OR UAA=3)

 2 = Kraft variant B = (UBA=2 OR UAA=4)

 3 = Kraft variant C = (UBA=3 OR UAA=1)

Matching up disparate code frames like this across hundreds or even thousands of codes

and variables is a nightmare for DP, and is a fertile breeding ground for outrageous

errors. Once allocated and defined, under the principle of Immutable Definitions a code is

sacred and inviolate against any change, so it is a good idea to get it right from the

outset. In a CT job a poor decision, once entrenched, is often practically impossible to

undo.

Log Each Update Step

Every update should be exhaustively documented for the existing number of cases, cases

in this update, period covered by this update, new codes and variables, any problems

encountered and the actions take to address, source data file names, backups, etc.

Without such a log, determining when something went wrong can be needlessly difficult

or even impossible.

General Software and System Requirements

If your house system for DP and analysis does not support the following minimum

features and functionality, then it is suitable only for the simplest types of static CT.

Copyright Red Centre Software 2008 Page 13 of 25

Use Referencable Master Brand Lists

A typical FMCG job could have twenty variables which use the master variant brand list,

and another twenty which use the parent brand list. That is a lot of places to add a new

brand code. To automate this you need a software system which can reference master

lists. In Quantum, you can use a #include. In Surveycraft, you can cite the full code

frame at the first instance, and then refer to that instance (or parts of it) for all

subsequent occasions. Other systems have other ways. Find out what yours is, and

enforce its use. Updating the master is a Super-Action.

Create Named Code Lists

A master brand list is often just the starting point, however. In a market like disposable

razors there are many intersecting segments among the brands. There are single blade,

double, triple and triple plus blades, system handles, total throw-away, self-lubricating,

male and female specialisations, etc, and these segments cut across all the four parent

brands (Gillette, Bic, Wilkinson Sword, Schick). In a market with literally thousands of

variants, the only way to manage this sort of confusion is to be able to name the code

lists which define each category type, for example, you could have

AnySingleBladeDisp=1/10,51/78,102,108,234/300,345,378,401,423,456,502

AnyDoubleBladeDisp=11/22,45,49/50,82/100,111/145

AnyTriplePlusBladeDisp=146/200,301/344,380/400

AnyDisposable=AnySingleBladeDisp|AnyDoubleBladeDisp|AnyTriplePlusBladeDisp

AnySystemHandle=350/360,402/422,550/600

These example lists are actually quite a lot shorter than the reality I recall.

Now, if you need to run a set of tables filtered to those who last bought disposable

brands, the filter can be trivially specified as BBL=AnyDisposable, and similarly for brand

bought ever, as BBE(AnyDisposable), etc. This can avoid a very large number of

constructions, and also has the additional advantages of being self-documenting, and of

allowing the addition of new items in one place only (the code list) which is then picked

up by an indefinite number of instances. To equivalently filter otherwise could require the

20 variables with brand list * 5 product types = 100 constructed variables.

Failure to use master code lists means that at each instance analysts will be making

inconsistent decisions about what constitutes a system versus disposable, etc. In

Surveycraft, this is an L spec. Other systems have other ways, such as macro definitions.

Code lists satisfy the principles of Absolute Consistency and Super-Actions Always.

Code lists can also be used to keep brand nets organised.

AnyKraft = 1001/1999,5001,5023,5234

If UBA(AnyKraft) then...

If UAA(AnyKraft) then...

...

Thus, no matter how many times the Kraft variants are evaluated in expressions, a new

variant can be incorporated across the board by simply editing the definition of AnyKraft

once in some central location.

Copyright Red Centre Software 2008 Page 14 of 25

Map All Jobs to a Consistent Job Structure for Common Variables

Different field systems have different ways of naming variables, and often use different

data structures for storing the case responses within a variable. Surveycraft forces

names to be of the form Qxxx where 1<=xxx<=9999. Traditional SPSS has

programmatic variable names (leading alpha, alphnumerics, underscore) with an 8

character limit. Some systems do not name variables at all, using the description only, or

even worse, just column references. Some systems support high level data structures

such as multi-response coded/uncoded hierarchic. Some, such as SPSS, force everything

to be low level atomised single response. Under the principle of Absolute Consistency, if

your CT jobs require different field services using different data collection systems, with

the result that conceptually equivalent variables are routinely delivered under a variety of

different names or non-names and are packaged in different ways in different data

structures, then having a way of mapping them all to a single consistent set of variables

under a single consistent and meaningful nomenclature can avoid a lot of strife.

Under the Don’t Bloat principle, any source variable which already structures the data the

way you want should be simply aliased to a standard name. For example, if the standard

name for a demographic such as gender is GEN, but your Surveycraft supplier is

delivering Q8652, your SPSS supplier is delivering XZ3_iv, and your SSS supplier is

delivering RespGender, then without aliasing, all of the standard processing for

demographics will need to be done in three conceptually equivalent but physically

different ways.

Q21c. What is your gender?

Under the principles of Absolute Consistency, Maximum Generality and Super-Actions

Always, then by aliasing the many can become one, and all related syntax can instead be

uniformly expressed.

Arranging for maximum commonality across a suite of jobs can dramatically reduce setup

and running costs, and hugely improve the navigatability among jobs for analysts. If

TMBA always means Top of Mind Brand Awareness, and analysts are assured that this

measure is uniformly defined and implemented across all jobs, then job learnings are

easily transferred to new jobs, and will rapidly accumulate to expertise and confidence.

Aliasing source variables avoids double storage, but if aliasing is not achievable then

consider a batch process or a script to copy/rename. As long as the links are documented

by virtue of the process, then the renaming should be safe. Disk storage is a lot cheaper

than the time wasted in endlessly respecifying the same logical relationships, and the

opportunities for errors arising from mis-specification are much reduced.

Copyright Red Centre Software 2008 Page 15 of 25

Data Structures

A related issue is the membership count and member structure of the variable set. Some

systems atomise multi-response (such as SPSS *.sav) and few support hierarchic data in

any meaningful way. So if your jobs are sourced from several different systems which

employ different data structures to store the case responses, then you will need to map

them all to a single set of data structures. Here, the renaming can be done as the

constructed target. All mappings will be different, so aliasing saves nothing. For example,

for Unaided Ad Awareness, standard name UAA,

Questionnaire text: Q1a. Do you recall seeing any recent advertising for soft drinks or

carbonated beverages? What brands were being advertised?

Surveycraft and SSS support multi-response, so aliasing avoids duplicate storage, but

SPSS *.SAV requires 99 variables, one for each possible response, so a variable net

needs to be applied to reduce the 99 single response variables to a single multi-response

variable. Naming the multi-response target UAA at the same time satisifies the principle

of Absolute Consistency.

Specification Generators

A system for specification generation is essential for maintaining constructions. In

Surveycraft the spec generator operator is < >, so for example <1/10> delivers 1, 2, 3,

...10 in sequence in any context. This sort of thing is essential to heteromorphicity

because it allows constructions to be specified in a way which is dynamically self-

maintaining. For example, consider the variable net of TMBA with UOBA to get a total

UBA. Regardless of the system in use, somewhere a set of conditional filters is evaluated

to map the net of codes to UBA. If the rules have been followed, and TMBA and UBA

have exactly the same codes, then on a code frame of 1 to 10

if TMBA=1 or UOBA=1 then set UBA=1

if TMBA=2 or UOBA=2 then set UBA=2

if TMBA=3 or UOBA=3 then set UBA=3

.

if TMBA=10 or UOBA=10 then set UBA=10

This is easy enough, but what happens when there is a new code 11? The old way is to

manually add another filter

if TMBA=11 or UOBA=11 then set UBA=11

A spec generator approach could be abstracted as

if TMBA=* or UOBA=* then set UBA=*

where * means ‘all currently defined codes for this variable’. This way, it never matters

what happens at the source end – the processing system will seamlessly adapt, and the

new brand will automatically appear in all constructions which net the brand list. This

satisfies the principles of Maximum Generality and Super-Actions Always.

Copyright Red Centre Software 2008 Page 16 of 25

If your system does not support specification generators, then consider writing a

parameterised VB script to auto-edit the appropriate files.

Disassembly of Constructions (Variable Ancestry)

The ancestry for UBAN, Net Unaided Brand Awareness, is

These relationships are implicit in the variable map, but can be hard to unravel explicitly.

Ancestry trees can get very intricate, so analysts need a way to confirm that the tree is

built up in the correct way. If Awareness for Coca-Cola is 5%, which cannot be correct,

then where did the problem arise? Ideally, your software should be able to deconstruct

the ancestry for any derived variable, and show the logic of the connections – otherwise,

a great deal of time will be wasted trying to work out where things went wrong.

See the section Heteromorphicity in Practice below for a more complex example.

Rollback

When it is all messed up, you must be able to rollback, reimport and reprocess. Under

the principle of Super-Actions Always this should require of the operator only the time it

takes to initiate each action. A subtle point is that only the data is affected – all manual

extensions to construction definitions or report specifications in this update must remain

intact, so a roll-back is not a strip back. Any manually extended structures or reports

simply await a fresh pass of the corrected data.

Scripting

For every manual task which can conceivably be scripted, script it. As soon as possible.

Otherwise task time T over N updates will require N*T of the operator’s time over the life

of the job. If you have done it twice already, then script it now.

Weight within Periods

Otherwise, past data changes as more cases are input to the weighting algorithm, which

can be upsetting for clients.

Copyright Red Centre Software 2008 Page 17 of 25

Support External Data

Inserting a row of constants for things like GRPs, TARPs, warehouse withdrawals, CPI

index, etc is not generally a problem if working at the same resolution as the data was

collected (week for week, month for month, etc). But for the ideal system, analysts need

to be able to interactively and seamlessly re-aggregate and/or re-average external data

at different resolutions along with survey series.

The principle of Maximum Generality means that analysts should never be locked into

only weekly or only monthly windows. In the above chart, the GRP series which is daily

external (not survey) data, has reaggregated seamlessly from a Y2 range of 0 to 400 to

0 to 5,000.

True Calendar

Charts especially need to be able to show the calendar on the X axis, regardless of out of

field periods. Data collection must be at daily resolution (not weekly) or calendar months

cannot be supported, making matching survey series to external monthly indices

approximate. Also, competitors may advertise during an out of field period, so GRPs may

need to be shown on charts for weeks when there is no survey data.

Copyright Red Centre Software 2008 Page 18 of 25

Here, the survey (at daily resolution) is out of field over the weekends (no day codes are

defined for the 6th, 7th, 13th, 14th, and 20th, 21st) , which happens to be just when Brand1

advertises. The rise in Brand1 makes sense when viewed against the media weight.

Diagnostics

No matter how slick and quick the processing, if the final reports are wrong it is all a

great waste of time. Maximum damage ensues from errors which persist through to the

reporting instrument, requiring a complete roll-back and reprocess to fix. Therefore the

sooner an error is caught and addressed the better.

There are six primary techniques:

1. Auto-generate an audit report on all changes to the job at each update

2. Look for and implement as many check-sum relationships as possible

3. Create a table which shows the total for each variable across the last N prior

periods and look for unexpected empties or wildly out of character values

4. Create a table specification which compares the update period to N prior

periods, and then sort by greatest difference

5. Create charts which obviously visually announce a fundamental problem

6. Run a summary process which reports on all variables for number of cases,

high and low bounds for coded, maximum and minimum for uncoded, etc.

For point 4, the greatest differences will be either analytically interesting (poor man’s

data mining) or indicate a data issue, either of which is well worth knowing. A data issue

may be as simple as a variable being rotated out as scheduled, or as fundamental as a

miscode in the field.

Copyright Red Centre Software 2008 Page 19 of 25

1. Audit Updates

At each update, a report on all changes with respect to the prior state of the job is

essential. This must detail all new codes to existing variables, any changes to the decode

labels for existing codes, any changes to the descriptions for existing variables, and all

new variables. (Dropped variables and codes are covered by 3) and 4) below.) An

example of the sort of output needed is

new code TMBA(239), Brand Alpha

new code UOBA(239), Brand Alpha

new code TMAA(293), Brand Alpha

new code UOAA(239), Brand Alpha

changed code def TMBA(238), old: BrandGamma

 new: Brand Gamma

changed code def IMAGE1(99), old: Don’t Know

 new: Planet Zeta

In a real job, these reports can be very large. Here, there are two problems: TMAA has

Brand Alpha as 293 instead of as elswhere 239, and the meaning of IMAGE1 code 99 has

changed from Don’t Know to Planet Zeta. Both of these are serious issues, and must be

explained and addressed. The change of BrandGamma to Brand Gamma (with a space)

is a tidy-up, not an error, but it is always nice to see a fix surface, or to be assured that

someone cares, or to check that an instruction has been followed.

2. Check Sum Reports

Many jobs have all sorts of implicit check sums which can be used to test correctness in

many areas. Typical circumstances are to check that verbatim coding has been done

correctly, or that various nets have happened correctly.

One such simple check sum is UBA = TMBA+UOBA (unaided brand awareness = top of

mind plus unaided other). If this does not hold, then the separation into first and other

has not been done correctly. Consider this verbatim string in response to an unaided

brand awareness question where the only brands are Brand Alpha=1, Brand Beta=2,

Brand Gamma=3 and Indeterminate=99:

alpha, love that affy stuff, betamax, gammyleg, alphabet, alf garnet

This then codes as 1, 1, 2, 3, 99, 1. The correct coding would be TMBA=1 and

UOBA=2,3,99. It is however very common to see things like UOBA=1,2,3,99,1 -

expecially when the respondent has given 20 brands and five of the twenty are spelling

variations or synonyms of the same brand. This sort of thing can be easy for human

coders under deadline pressures to miss. (Will natural language AI ever rise to the

challenge?)

If your system can support it, consider auto-coding all verbatims word for word, and then

running tables of auto-coded by human-coded. This can be very useful in catching a

change in coding habits at the fringes, most often caused by personnel shifts. A stringent

coder might reject alfgarnet, and a loose coder might assign alphabet as both code 1 and

code 2. Under the principle of Absolute Consistency, monitoring the verbatims somehow

or other is a pre-emptive necessity – do it manually if there is no other way. Given the

sensitivity of many of the measures which derive from verbatims, a coding inconsistency

can have dire consequences for analysis.

Copyright Red Centre Software 2008 Page 20 of 25

Reformulating as UBA – TMBA – UOBA = 0, tabulating this expression against Case, and

then sorting in ascending order identifies the relevant case IDs, which can then be

directly examined. For each of the three example cases, UBA-TMBA-UOBA = 5-1-5 = -1.

Another class of common error is to find that Unaided mentions are not consistent with

Aided. For example, if the code frame for both Aided and Unaided is 1 to 5, and a case

has data as

Unaided = 3,4,5

Aided = 1,2,3

then if literally interpreted and accepted the respondent has forgotten about brands 4

and 5, which were recalled unaided just several questions prior. This is not possible for a

compos mentis human. Aided awareness questions should always be a superset of

Unaided for codes in common – otherwise recall has out-performed recognition. The

check sum for this condition is Aided - Unaided >= 0 for each common brand for each

case. If anywhere less than zero, then the aided/unaided data for that case is not

sensible.

3. ZeroSumTest

At each update, run a table of N recent Periods by the total of each variable, and

examine each row (one per variable, so often there can be a few thousand rows) as

frequencies (never as percents), looking for out-of-character behaviour such as a big

jump in either direction, slabs of empties where data was expected, data which was not

expected where variables have been seasonally rotated out, etc.

This test is especially useful for catching a failure to merge coded verbatims back into the

main data set.

Copyright Red Centre Software 2008 Page 21 of 25

4. Compare an Update to Average of Prior N Updates

This is the detailed version of the Zero Sum test above. At each update, run a table of N

recent periods by all variables, perform tests such as standard deviation of the last N

periods (a large value means a lot of jerkiness), ratio or difference of this period against

the average of the last N periods, etc, and then sort on the test vector. This will push all

aberrants to the top and bottom row positions in the output, making it easy to skip over

the boring middle and focus on the big movers in either direction.

5. Create charts which announce data errors

Depending on the job, there may be more candidates for this test, but two which will

always apply are a chart of respondent counts within each coded period, which should

show that the data is in chronological order, and a histogram of weights, which should

show that the weighting regime is sensible, with no cases allocated huge and distorting

weights.

For checking the period codes and the respondent counts in each period:

Copyright Red Centre Software 2008 Page 22 of 25

All week codes are in increasing order, but some week codes have been skipped.

An example of a very bad sequence of week codes is

The messy bits could be hiding a multitude of data sins, and should never have been

allowed to happen.

For weightings:

Copyright Red Centre Software 2008 Page 23 of 25

6. Variable Reports

Run a process to deliver a summary report on all variables for things like number of

codes, number of cases, last update, most recent data, etc. This is an important aspect

of housekeeping, and a good way to purge the job of unwanted constructions, bad

experiments, unused rim weights, etc.

Heteromorphism in Practice

Continuing on from the section above on software and system requirements, the theory

is all very nice, but how exactly is heteromorphism achieved? The basic requirements are

reference lists, self-modifying constructions, report axes which automatically collect and

display new codes, a solid scripting environment for laying out and executing all routine

processes, and a self-updating reporting regime.

Constructing

Consider the following derivation of a measure for Awareness from all sources: unaided,

aided, brand and advertsing.

Copyright Red Centre Software 2008 Page 24 of 25

The final measure, A=Awareness, depends on 13 prior variables: seven source variables

at the leaf nodes and six intermediate constructions. In an ideal system a new brand

code would be seamlessly accommodated through all the steps, and then automatically

appear on the relevant reports.

To automate the derivation of A against a new brand, the leaf variables must use a

master reference list to collect all new codes, and all non-leaf variables must be created

and maintained by specification generators for variable nets (eg UBA = TMBA or UOBA)

and code lists for variant to parent nets (here UAN from UA).

Lock Report Axes

A report which plots all the brands of a measure should automatically pick up any new

brands which occur. Similarly, a time series report should pick up all new period codes,

and optionally drop off old ones. A brand comparison report, however, should most often

stay as specified. Some reports therefore need one or both axes to be heteromorphic. In

a report of week by key measures, week will be heteromorphic, but the key measures,

having been carefully chosen, will not. A report of Top of Mind Awareness by Brand Last

Bought will usually be heteromorphic in both axes.

Scripting

Those who began life as data or market analysts a decade or more ago, and who had to

learn those arcane languages for SPSS or SAS, or the idiosyncratic Surveycraft or

Quantum specification systems, are unlucky to have missed the much cleaner

approaches afforded by modern scripting languages. The Windows operating system

comes with scripting in either VBS or JavaScript built in. This facility has been thoroughly

Copyright Red Centre Software 2008 Page 25 of 25

exploited by SPSS Dimensions, and I thoroughly endorse the Dimensions approach. A

similar line has been taken by Blaise, among others. Any modern MR software which

does not support modern scripting is doing its users a profound disservice. Scripting

imparts huge control to the script writer. Batch processing can be done either table by

table, or can be generalised using self-filling arrays and loops etc. Scripting is where DP

get to be imaginative and try new techniques to improve throughput or diagnostics.

Running CT jobs should never be boring, because each one is a working laboratory on

how to streamline ever more efficiently.

Any task which has to be done routinely at each update should be considered as a

candidate for scripting – even such simple things as moving files around to source

directories for reading, and then to backup directories post update. No matter how trivial

the task, if it can be scripted, then script it.

Reporting

Finally, one of the last great manual tasks is updating the reporting instrument, most

commonly a PowerPoint slideshow. Typically, the PowerPoint slideshow accumulates

more annotations, comments, callouts, and graphics over time, with possibly hundreds of

reports embedded in slides. How are all of these charts and tables going to be updated?

There are quite a few systems which will simply populate a PowerPoint deck with tables

and charts (this is a ‘push’ operation), but if those tables and charts then have to be

manually copied to their positions in the master deck then little is gained.

The ideal system requires a way to make the PowerPoint deck update itself simply by

pointing it at a set of updated reports. This is a ‘pull’ operation.

It is important that the difference between push and pull is very clearly understood. A

push will not save much time, and will require a lot of manual effort still. A pull, on the

other hand, is a fully automated process.

Conclusion

In many ways, CT has come a long way in the last twenty years, but far too often the

potentials afforded by advances in software and processing systems are not being

properly utilised. I am sure there are pockets of excellence throughout the industry, but

too often the brute force approach reminiscent of the early years still holds sway, and the

large MRs are no exception to this. The answer, as I have tried to make completely clear,

is a combination of rigorously enforced work practices, and software which is adequate to

the task.

Once the basic plumbing is in place, analysts can be freed to work much more as social

scientists than as account trouble-shooters, and traditional DP can move beyond fixing

field problems and tedious batch table runs and into architecturing the processes and

procedures for job updates. This will create a productivity dividend which can be taken as

either deeper analysis, or more clients.

For the future, there remains a lot of potential in looking at automating the coding of

verbatims, and as desktop PC capacity increases, there will be a lot more scope for

automated data mining techniques.

