

Ruby and R

© 2010-2014. Protected by International Copyright law. All rights reserved worldwide.

Version: 3.0, 15 August 2015

This document remains the property of Red Centre Software Pty Ltd and may only be used by explicitly authorised individuals who are responsible for its safe-keeping and return upon request.

No part of this document may be reproduced or distributed in any form or by any means - graphic, electronic, or mechanical, including, but not limited to, photocopying, recording, taping, email or information storage and retrieval systems - without the prior written permission of Red Centre Software Pty Ltd.

Such permission is granted to current Ruby licencees.

Confidential

Ruby and R

This document shows how to access, modify and execute R routines using a Ruby report as the input.

This is not an R tutorial. For details on any of the procedures, see the official R help. It is assumed that you know what you are doing, and can make the appropriate choices regarding inputs. The examples here, though useful in their own right, are intended primarily as the starting point for developing your own set of procedures.

INSTALLING R	3
Installing R Packages	6
INSTALLING THE REQUIRED RUBY FILES	
Run_RScripts.vbs	
The R Procedures	
The Example Reports	
VIEW OR EDIT AN R SCRIPT	13
THE PROCEDURES	15
Correspondence Analysis	15
Principal Components Biplot	
Principal Components Scree Plot	19
Cluster Dendrogram	
Cluster Plot	23
K-Means Cluster Analysis	
Diagnostic and Chart Outputs	28
Comparing to Ruby Cluster	29
Plot	
Factor Analysis	
Summary Stats	
Covariance	
Correlation	
Regression Model	
Anova	
HANDY HINTS	-
MISCELLANEOUS	47

INSTALLING R

R can be installed from a single download at

http://cran.r-project.org/

Do you want to run or save R-3.2.2-win.exe (62.2 MB) from cran.r-project.org?

 Run
 Save

 Save as

- Save to a subdirectory of your choice
- Run the self-extracting executable by a double-click

Computer > OS (C:)	▶ Down	loads ▶ R ▶			
Organize 🔻 📷 Open New fol	der				
UPSMR	*	Name	Date modified	Туре	Size
📕 R		👸 R-3.2.2-win.exe	16/09/2015 12:40	Application	63,759 KB
🎍 Reaper					
🎍 Ribbon MDI Fix					
鷆 Ruby					
Script Debuggers	-				
R-3.2.2-win.exe Date modifi Application S	ied: 16/09 ize: 62.2		9/2015 12:22 PM		

• Install to the default sub-directory

j🕄 Setup - R for Windows 3.2.2	
Select Destination Location Where should R for Windows 3.2.2 be installed?	R
Setup will install R for Windows 3.2.2 into the following folder. To continue, click Next. If you would like to select a different folder, click Brows	se.
C:\Program Files\R\R-3.2.2 Brov	vse

• Deselect the 32 bit option - we want 64 bit (unless you have only Windows 32)

• Accept defaults

Setup - R for Windows 3.2.2
Startup options
Do you want to customize the startup options?
Please specify yes or no, then dick Next.
Yes (customized startup)
No (accept defaults)

• Continue to the end of the installation procedure

R should now be on your desktop.

- Double-click to run
- Type the text *plot(rnorm(100))* at the command prompt and press Enter

A scatter plot appears.

Installing R Packages

In addition to the base functionality, R supports third-party packages for special or extended procedures, and there are thousands of them. The R routines which need packages are

KMeans	psych
Plot	psych
Summary Stats	psych
Correlation	Hmisc, xlsx, corrgram, ellipse

To install the psych package,

• Enter *install.packages()* at the R console, and then select a mirror which is geographically close

R Console	
<pre>> install.packages() Please select a CRAN mirro</pre>	or for use in this session
	CRAN mirror O-Cloud Argentina (La Plata) Argentina (Mendoza) Australia (Canberra) Australia (Melbourne) Austria Belgium Brazil (BA)

The Packages list should then appear.

• Scroll down to psych, select it and click OK

The package is downloaded and installed. Repeat for Hmisc, xlsx, corrgram and ellipse.

INSTALLING THE REQUIRED RUBY FILES

Ruby version 3.0 installations and later will have the files $RubyRun_RScripts.vbs$, thirteen R procedure files Ruby*.r, this document RubyDocsRuby and R.pdf, and four example reports $RubyJobsDemoReportsSessionr_*.rpt$.

Run_RScripts.vbs

• Ensure that you have the file \Ruby\Run_RScripts.vbs

The next task is to tell Run_RScripts.vbs where Rscript.exe is installed on your machine.

• Navigate to and note the path for Rscript.exe

(If 32 bit R and OS, then select the Rscript.exe in just bin, not bin x 64.)

The path for this installation is c:\Program Files\R\R-3.2.2\bin\x64\Rscript.exe.

• Scripting | Edit

• File | Open

์ 🏂 R	uby Script Editor 2.5						
File	Window Help						
		_				_	
	🏂 Open						
		omput	er 🕨 OS (C:) 🕨 Ruby 🕨 🗸	· ·	Search Ruby		
	Organize 🔻 Ne	w fold	er			•	
11	RCodeXE8	3 🔺	Name	Dat	e modified	Ty _l 1	
	RCodeXE8	3_R	Run_RScripts.vbs	16/	09/2015 3:51 PM	VB =	
	D 퉲 RFP		Editor.vbs		06/2015 12:55	VB	2
	RScripts		Exports_v3.js		06/2015 9:25 PM	JSc	
	🛛 🛛 🕹 Ruby		ExportVars_RunR_SvyDesign_SE_CI.vbs		05/2015 3:49 PM	VB:	
	⊳ 📗 Ruby25		Exports_TEX.js	6/0	5/2015 3:33 PM	JSc	No
	NubyArt	_	RubyVariablesLibrary.vbs	31/0	03/2015 6:24 PM	VB:	а
	NubyTest	Ξ	RubyImportLibrary.vbs	15/3	12/2014 11:06	VB:	
	D Samples		RubyUtilitiesLibrary.vbs	15/	12/2014 11:06	VB:	
	ScriptHel	þ	RubyReportsLibrary.vbs	15/	12/2014 10:58	VB:	
	⊳ 🍌 SDog		Exports_140908b.js	8/0	9/2014 6:35 PM	JSc 🔻	-
	🍌 Source	Ŧ	< III			P.	
		File n	ame: Run_RScripts.vbs	-	Script Files (*.vbs	;*.js)	
					Open 🚽		Canc
line:							canc

• Set the path assignment at line 12

Note the double-double quotes, needed because "Program Files" has a space.

The R Procedures

• Ensure that the following R scripts are in your \Ruby subdirectory:

Anova.r ClusterDendro.r ClusterPlot.r Correlation.r CorrespAnaBiPlot.r CoVariance.r FactorAnalysis.r InteractiveKMeans.r Plot.r PrinCompBiPlot.r PrinCompScreePlot.r RegressionModel.r SummaryStats.r

These scripts implement the procedures. They are Ruby-specific, and will not work unless stored in the \Ruby subdirectory and are called by Run_RScripts.vbs.

The Example Reports

Three reports are used as example inputs.

• Ensure that you have these three *.rpt in ..\Session

• Ensure that you can open these reports from the TOC

Ruby - [r_RegMod_EDU_INC~Case]
🀠 File Edit View Job Report Analysis
Exec
⊳ ∎ User
Session
Documents
🖌 🗁 Ruby Demo
Sample Tables
Presentation Charts
Export to MS Office
Tables for R
r_EDU_INC
r_RegMod_EDU_INC~Case

1	r_Fa	ctAnal_NPS_FAV~Case			
To Z (•	r_EDU_INC			
Sic	To	🐠 r_RegMod_EDU_INC~Case			
Fre	Sic Filt Co Co	Top: sum_Education (LT HIGH Side: Case Filter: Education (LT HIGH SCHC		RADUATE), sum_Income (Under \$10k-to-Ove ATE)&Income (Any)	∍r \$75k)
	0	Frequencies Corner Net Respondents Roll Columns	EDU	INC	
		1	2.00	4.00	
		2	3.00	5.00	
		2	0.67	4 67	

If you do not have all of the above files, then download the current Ruby install as a zip, and extract them to the appropriate sub-directories.

The two reports which use Education and Income use actual data from GSS2004, and as such there is a strong positive linear relationship between income and education.

n_EDU_INC

Top: Education

Side: Income

Filter: Education (LT HIGH SCHOOL-to-GRADUATE)&Income (Any)

	mn Percents er Net Respondents	Education							
		 LT HIGH SCHOOL	HIGH SCHOOL	JUNIOR COLLEGE	BACHELO R	GRADUAT E			
	Under \$10k	35%	19%	7%	13%	7%			
	\$10k to 20k	28%	21%	13%	9%	9%			
Inco	\$20k to 30k	17%	21%	16%	16%	7%			
me	\$30k to 50k	14%	26%	38%	25%	28%			
	\$50k to 75k	3%	10%	16%	21%	28%			
	Over \$75k	4%	3%	11%	15%	22%			

The NPS and Favourability variables used for factor analysis aggregate as

🀠 S	Report1					🐠 \$Report2						
	Net Promote: Net Promot						Top: Favourability Brand Side: Favourability Rating					
	mn Percents er Net Respon		Net Promoter Score Brand			re Brand Column Percents Corner Net Respon		Favourability Brand		Favourability Brand		
dents	5		NPS - BrandX	NPS - BrandY	NPS - BrandZ	dents	dents		BrandX	BrandY	BrandZ	
	1		3%	4%	3%		1		0%	2%	7%	
	2		11%	11%	11%		2		1%	3%	16%	
Net	3		4%	6%	3%		3		3%	11%	29%	
Pro	4		5%	6%	6%	Favo	4		1%	20%	22%	
mot	5		6%	5%	6%	urab			14%	23%	14%	
er Scor	6		10%	11%	11%	ility	6		23%	18%	6%	
e	7		8%	8%	13%	Rati	7		22%	11%	3%	
Scor	8		20%	18%	15%	ng	8		19%	8%	1%	
е	9		23%	21%	26%		9		14%	5%	1%	
	10		9%	10%	7%		10		4%	1%	1%	
	Net Promoter		-8%	-11%	-7%		Code Mean		6.89	5.25	3.71	

BrandZ is least favoured, but nonetheless well promoted.

 r_EDU_INC is a crosstab, whereas the other two are score tables, one row per case. Examine the specifications to see how they are made.

VIEW OR EDIT AN R SCRIPT

• Analysis | R Procedures

- Select Correspondence Analysis
- Check View/Edit
- Click OK

🐠 Run RScript
Procedure
Correspondence Analysis
Principal Components BiPlot
Principal Components ScreePlot
Cluster Dendrogram
Cluster Plot
Interactive K-Means Cluster
Scale by Z-Score: Target Clusters: 3
Plot
Factor Analysis Target Factors: 3
Summary Stats
Co-Variance
Correlation
Regression Model
Anova
View/Edit Ok Cancel

The R script CorrespAnaBiPlot.r is opened in Notepad.exe.

```
CorrespAnaBiPlot.r - Notepad
File Edit Format View Help
# Correspondence Analysis Biplot
x <- read.table('clipboard', header = TRUE, row.names = 1, sep = '\t', dec = '.')
win.graph()
library(MASS)
y<-corresp(x, nf=3)
y
biplot(y)
locator(1)</pre>
```

This is how you can both review what R is going to do, and edit the script to meet any custom requirements. Most of the supplied scripts are intentionally as basic as possible, while still doing something useful. The above R script

Reads the Ruby table from the clipboard (placed there by Run_RScripts.vbs) into x Sets up the Windows Graphics device for plotting Loads the MASS library (which defines the corresp() routine) Runs a correspondence analysis on x and stores the results in y Displays the contents of y in a Command window Displays the biplot of y on the graphics device Waits for a click on the graphics device to close it

THE PROCEDURES

Correspondence Analysis

- Open the supplied table r_EDU_INC
- Job | Scripting | Favourites | Run_RScript
- Select Correspondence Analysis
- Click OK

The outputs are

C:\Windows\System32\cmd.exe - C:\"Program Files"\R\R-3.1.0\bin\x64\RScript C:\Ruby\CorrespAnaBiPlot.r
First canonical correlation(s): 0.43765523 0.17607597 0.07067659
Row scores: [,1] [,2] [,3]
Under \$10k -1.3822394 1.16122954 -0.3373648 \$10k to 20k -1.0285936 0.04251221 1.2937772
\$20k to 30k -0.4751312 -1.00482888 -1.7742088 \$30k to 50k
\$50k to 75k 1.2320534 0.59447034 -0.7112454 Over \$75k 1.3360857 1.47987545 0.3754423
Column scores: [.1] [.2] [.3]
LT.HIGH.SCHOOL -1.5761315 0.9364417 0.5331221 HIGH.SCHOOL -0.6707487 -0.9714755 -0.5061525
JUNIOR.COLLEGE 0.4870062 -1.3773193 0.9042215 BACHELOR 0.5256343 0.3366075 -1.7511865
GRADUATE 1.2380073 1.0727926 0.7803070

The correspondence map is very close to the Ruby Perceptual Map, allowing for different scaling:

Principal Components Biplot

The R script is

PrinCompBiPlot.r - Notepad File Edit Format View Help # Principal Components Biplot x <- read.table('clipboard', header = TRUE, row.names = 1, sep = '\t', dec = '.')</pre> win.graph() y < -princomp(x)/\$loadings biplot(y) locator (1)

If you are new to R, note the use of . and \$. In R, a dot is used like an underscore in most other programming languages. It has no intrinsic meaning - it is just a character. The name could just as well have been wingraph(), but the original programmer decided to call it win.graph(), and in most other languages, it would probably have been win_graph(). In short, the . does not mean 'member of', as it does in C, C#, .Net dialects, VBA, JScript, etc. The 'member of' symbol in R is \$, so y\$loadings means to display the loadings member of y, which has just been populated by Y<-princomp(x).

Also, the assignment operator in R is usually <-, although nearly always = will do the same thing. Using <- is considered better style.

On the same table as above, run as

Top: Education Side: Income Filter: Education (LT HIGH SCHOOL-to-GRADUATE)&Income (Any)

Column Percents Corner Net Respondents		Education					
		 LT HIGH SCHOOL	HIGH SCHOOL		BACHELO R	GRADUAT E	
	Under \$10k	35%	19%	7%	13%	7%	
	\$10k to 20k	28%	🐠 Run RS	Script			
	\$20k to 30k	17%			-		
me	\$30k to 50k	14%	Proce	edure			
	\$50k to 75k	3%	Correspondence Analysis				
	Over \$75k	4%		rinciple Compo		1	
			© P	rinciple Compo	onents ScreeP	lot	

The outputs are

C:\Windows\System32\cmd.exe - C:\"Program Files"\R\R-3.1.0\bin\x64\RScript C:\Ruby\PrinCompBiPlot.r
Call: princomp(x = x)
Standard deviations: Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 15.963837 11.623225 3.912949 2.187536 1.231106
5 variables and 6 observations.
Loadings: Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 LT.HIGH.SCHOOL 0.673 -0.335 0.616 -0.234 HIGH.SCHOOL 0.178 -0.610 -0.259 0.157 0.711 JUNIOR.COLLEGE -0.364 -0.688 -0.145 -0.396 -0.465 BACHELOR -0.265 -0.199 0.899 -0.282 GRADUATE -0.559 0.727 -0.103 0.380
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 SS loadings 1.0 1.0 1.0 1.0 1.0 Proportion Var 0.2 0.2 0.2 0.2 0.2 Cumulative Var 0.2 0.4 0.6 0.8 1.0

Principal Components Scree Plot

The script is the same as for the biplot, except screeplot() is called instead.

On the same table as above, run as

n_EDU_INC

	mn Percents er Net Respondents		Education					
		_	LT HIGH SCHOOL	HIGH SCHOOL		BACHELO R	GRADUAT E	
	Under \$10k		35%	19%	7%	13%	7%	
	\$10k to 20k	-	28%	🀠 Run RS	cript			
	\$20k to 30k \$30k to 50k		17% 14%	Proce	dure			
	\$50k to 75k		3%			a Analysis		
	Over \$75k	-	3% Correspondence Analysis					

The outputs are

Call: princomp(x = x)
Standard deviations: Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 15.963837 11.623225 3.912949 2.187536 1.231106
5 variables and 6 observations.
Loadings: Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 LT.HIGH.SCHOOL 0.673 -0.335 0.616 -0.234 HIGH.SCHOOL 0.178 -0.610 -0.259 0.157 0.711 JUNIOR.COLLEGE -0.364 -0.688 -0.145 -0.396 -0.465 BACHELOR -0.265 -0.199 0.899 -0.282 GRADUATE -0.559 0.727 -0.103 0.380
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 SS loadings 1.0 1.0 1.0 1.0 1.0 Proportion Var 0.2 0.2 0.2 0.2 0.2 Cumulative Var 0.2 0.4 0.6 0.8 1.0

This shows that there are two dominant components.

Cluster Dendrogram

The script is

Run on the same table as above, as

The outputs are

C:\Windows\System32\cmd.exe - C:\"Program Files"\R\R-3.1.0\bin\x64\RScript C:\Ruby\ClusterDendro.r Under \$10k \$10k to 20k \$20k to 30k \$30k to 50k \$50k to 75k 10.44031 20.44505 13.52775 45.12206 38.24918 32.24903 41.12177 35.49648 27.98214 29.61419 20k 30k Øk to 20k to 38.24918 35.49648 30k to 50k 50k to 75k 32.24903 27.98214 27.27636 \$50k to 7 Over \$75k 29.61419 38.65230 38.23611 33.30165 12.12436 Call: hclust(d = y, method = "ave") Cluster method : Distance : Number of objects: : average : euclidean : 6

Cluster Dendrogram

Cluster Plot

This script is a bit more complicated:

```
ClusterPlot.r - Notepad

File Edit Format View Help

# Cluster Plot

x <- read.table('clipboard', header = TRUE, row.names = 1, sep = '\t', dec = '.')

win.graph()

library(cluster)

y.diss <- daisy(x)

y.diss <- daisy(x)

y.clus <- pam(y.diss, 2, diss = TRUE)$clustering

y.clus

###uncomment the preferred clusplot

clusplot(y.diss, y.clus, diss = TRUE, col.p = y.clus, labels = 2) # color points and labels

#clusplot(y.diss, y.clus, diss = TRUE, labels=2, shade = TRUE)

#clusplot(y.diss, y.clus, diss = TRUE, labels=2, span = FALSE) # simple ellipses

locator(1)
```

Run on the same table as above, as

Outputs are

C:\Windows\System32\cmd.exe - C:\"Program Files"\R\R-3.1.0\bin\x64\RScript C:\Ruby\ClusterPlot.r Dissimilarities : Under \$10k \$10k to 20k \$20k to 30k \$30k to 50k \$50k to 75k \$10k to 20k \$20k to 30k \$30k to 50k \$50k to 75k Over \$75k 10.44031 13.52775 38.24918 35.49648 20.44505 32.24903 27.98214 27.27636 45. 12206 35.49648 33.30165 29.61419 38.65230 41 12177 38 23611 12.12436 Metric : euclidean Number of objects : 6 Under \$10k \$10k to 20k \$20k to 30k \$30k to 50k \$50k to 75k Over \$75k

CLUSPLOT(y.diss)

Component 1 These two components explain 94.75 % of the point variability.

K-Means Cluster Analysis

This is a much more sophisticated example. The script is too long to review here.

The analysis both determines the optimal number of clusters and does the clustering itself. On the first pass, the number of cluster targets is automatically set to number of rows -1, and you make an educated guess as to the most likely number of target clusters. You then examine the scree plots for an 'elbow' and use the elbow value as the target clusters for a second run if the educated guess was not appropriate. You may of course prefer a coarser clustering than the scree plots suggest, but there is never any reason to ask for more, since the extra clusters will be just noise.

The k-means routine is adapted from

http://www.mattpeeples.net/kmeans.html

(Peeples, Matthew A. (2011) R Script for K-Means Cluster Analysis)

where the meaning of the various charts is fully discussed. The original version of this script has four user prompts: percents yes/no, zscore scaling yes/no, number of test clusters and number of target clusters. These inputs here come from the Ruby table (percent status) and from the Run_RScripts form, with test clusters set to number of rows -1. Apart from this, the only other difference is that a different example table is used.

Continuing with the above table, run as

🐠 Run R					
Procedure					
Correspondence Analysis					
Principle Components BiPlot					
Principle Components ScreePlot					
Cluster Dendrogram					
Cluster Plot					
Interactive K-Means Cluster					
Scale by Z-Score: 📝 Target Clusters: 3					
Plot					
Ok Cancel					

The Command window output is

Administrator	r: C:\Windows\System3	32\cmd.exe			
[1] "1" "1"	<u>50 30 C</u>				
	LT.HIGH.SCHOOL	HIGH.SCHOO	L JUNIOR.COLLE	GE BACHELOR	GRADUATE
Under \$10k	35	1	9	7 13	7
\$10k to 20k	28	2	1	13 9	9
\$20k to 30k	17	2	1	16 16	7
\$30k to 50k	14	2		38 25	28
\$50k to 75k	3	1	0	16 21	28
0ver \$75k	4		3	11 15	22
Group.1 Ll	.HIGH.SCHOOL H				GRADUATE
1 1	0.7684012	0.4313228	-0.443133		-0.8896462
2 2		-1.1959405	-0.305609		0.7925939
3 3	-0.2214037	1.0979126	1.940617	1.4864320	1.0837509
pdf					
2					

Note the pdf - this means that a PDF file has been written. On closing the Command window, the PDF is displayed. Scroll down to see the charts.

Cluster Solutions against (SSE - Random SS

Finally, the cluster plot is shown:

Principal Components plot showing K-means clusters

This shows three clear clusters as \$0-30k, \$30-50k and over \$50k.

Diagnostic and Chart Outputs

Three files are written to the \Ruby subdirectory:

kmeans_out.csv is the source table, Kmeans_out.txt has diagnostic details on the clustering, and kmeans_out.pdf for the charts as above.

Comparing to Ruby Cluster

 ➡ Region ➡ Occupation ➡ GEN (Gender) Gender ➡ Married ➡ Household ■ 1=Young Single ● 2=Peer Group ● 3=Young Family ● 4=Middle Family 	Variables EDU (base: cwf) EDU (base: cwf) 2=HIGH SCHOOL 2=HIGH SCHOOL 3=JUNIOR COLLEGE 4=BACHELOR 5=GRADUATE INC (base: cwf)	LT HIGH HIGH SC JUNIOR BACHEL GRADU	1.000	0.315 0.685	0.628 0.364
	 1=Under \$10k 2=\$10k to 20k 3=\$20k to 30k 4=\$30k to 50k 5=\$50k to 75k 6=Over \$75k 	Under \$10k to \$20k to \$30k to	0.126 0.136 0.140 0.166 0.063 0.021	0.079 0.077 0.117 0.213 0.139 0.097	0.104 0.101 0.065 0.112 0.082 0.069

EDU(6) No Answer has been removed.

• Run and save as EDU_INC_Clust3

To check the clusters

• Run the table INC, EDU by EDU_INC_Clust3

This shows that the three clusters are High School, College/Graduate and Less than High School. The highlighting on the left is an intuitive guess as to the income clusters.

Top: Income, Education Side: EDU_INC_Clust3

Colu	imn Percents			Income					E	ducatio	n		
		_	Under \$10k	\$10k to 20k		\$30k to 50k	\$50k to 75k		LT HIG H SCH		JUNIO R COL		
Z.	Cluster 1]	60%	64%	64%	54%	40%	22%	0%	100%	0%	0%	0%
2	Cluster 2		20%	21%	27%	41%	58%	73%	0%	0%	100%	100%	100%
EDU	Cluster 3		20%	16%	9%	5%	2%	5%	100%	0%	0%	0%	0%

Notice how the Income rows are close to linear. A chart of Income by EDU_INC_Clust3 with trend lines is

So, there is some difference about where to place \$30-50k between R and Ruby, but otherwise agreement on the cluster solution is reasonable.

Plot

This procedure simply demonstrates various plotting techniques. The R script is

```
Plot.r - Notepad
```

```
File Edit Format View Help
# Plot (chart) the table
args <- commandArgs(trailingOnly=T)
print(args)
title = args[1]
xlabel = args[2]
ylabel = args[3]
x <- read.table('clipboard', header = TRUE, row.names = 1, sep = '\t', dec = '.')
win.graph()
# uncomment the required plot method, or add new ones
library(psych); pairs.panels(x)
#boxplot(x)
#plot(x)
#library(lattice); plot.new(); xyplot(ts(x))
#matplot(as.matrix(x), type = "b")
#barplot(as.matrix(x), main=title, xlab=xlabel, ylab=ylabel, col=c("blue","red","gre</pre>
```

Only one of the plot methods can be uncommented.

The plot types are

pairs.panels:

boxplot:

plot:

The annotated point is LT High School=35%, High School=19%

•	LT HIGH SCHOOL	HIGH SCHOOL
Under \$10k	35%	19%
\$10k to 20k	28%	21%

xyplot:

matplot:

barplot:

Education by Income

Factor Analysis

For factor analysis the rows would usually be cases, so a different report is used.

• Open the table r_FactAnal_NPS_FAV~Case

• Run as

The output is

Administrator: C:\Windows\System32\cmd.exe
Call:
factanal(x = x, factors = numfacs)
Uniquenesses:
NPSBrandX NPSBrandY NPSBrandZ FAVBrandX FAVBrandY FAVBrandZ
0.972 0.938 0.974 0.991 0.659 0.943
Loadings:
Factor1 Factor2 Factor3
NPSBrandX 0.160
NPSBrandY 0.240
NPSBrandZ 0.162
FAUBrandX
FAVBrandY 0.584
FAVBrandZ 0.238
Factor1 Factor2 Factor3
SS loadings 0.342 0.110 0.072
Proportion Var 0.057 0.018 0.012
Cumulative Var 0.057 0.075 0.087
The degrees of freedom for the model is 0 and the fit was $1e-04$

Since factor analysis takes each row as a case, you could use it on r_EDU_INC by considering a 'case' as a circumstance, ie the income range.

• On the report r_EDU_INC, run as

Side	Education : Income : Education (LT HIGH SC	CHOOL-to-GRADU	ATE)&Income (Any)
Column Percents Corner Net Respondents			Education
conne	a net nespondents	LT HIGH SCHOOL	🐠 Run RScript 🥌
Inco me	Under \$10k \$10k to 20k \$20k to 30k \$30k to 50k \$50k to 75k Over \$75k	35% 28% 17% 14% 3% 4%	Procedure Correspondence Analysis Principle Components BiPlot Principle Components ScreePlot Cluster Dendrogram Cluster Plot Interactive K-Means Cluster Scale by Z-Score: Target Clusters: 3 Plot Factor Analysis Target Factors: 2

Note target factors = 2. The output is

Administrator: C:	\Windows\System32\cm	d.exe		
Call: factanal(x = x	, factors = numf	acs)		
Uniquenesses: LT.HIGH.SCHOOL Ø.135		JUNIOR.COLLEGE 0.028	BACHELOR 0.181	GRADUATE 0.089
Loadings: LT.HIGH.SCHOOL HIGH.SCHOOL JUNIOR.COLLEGE BACHELOR GRADUATE	0.221 0.973			
	0.536 0.912 pothesis that 2 statistic is 0.			

The loadings show a strong diagonal structure.

Summary Stats

The script is

```
SummaryStats.r - Notepad
File Edit Format View Help
# Summary Stats per column
x <- read.table('clipboard', header = TRUE, row.names = 1, sep = '\t', dec = '.')
summary(x)
library(psych); describe(x)</pre>
```

The summaries are by column, so this procedure will work on any table.

Using the factor analysis table above, run as

<pre> figure r_FactAnal_NPS_FAV~Case figure for the figure for the</pre>		🐠 Run RScript 📃 💌		
Top: sum_NPS - BrandX (1- Z (1-to-10) Side: Case		Procedure Correspondence Analysis		
Frequencies	NPSBrand NF	Principle Components BiPlot		
	X	Principle Components ScreePlot		
1	1.00	Cluster Dendrogram		
2 2.00		Cluster Plot		
3 1.00		Interactive K-Means Cluster		
4 2.00				
5	8.00	Scale by Z-Score: Target Clusters: 3		
6	2.00	Plot		
7	8.00	Factor Analysis Target Factors: 3		
8	4.00			
9	8.00	Summary Stats		
10	4.00	Co-Variance		

The output is in two parts:

Administrator: C:\Windows\System32\cmd.exe						
NPSBrandX NPSBrandY Min. : 1.000 Min. : 1.000 1st Qu.: 5.000 1st Qu.: 4.000 Median : 8.000 Median : 8.000 Mean : 6.635 Mean : 6.533 3rd Qu.: 9.000 3rd Qu.: 9.000 Max. :10.000 Max. :10.000 FAUBrandY FAUBrandZ Min. : 1.000 Min. : 1.000 Min. : 1.000 Ist Qu.: 4.000 Ist Qu.: 3.000 Mean : 5.000 Median : 3.000 Mean : 5.251 Mean : 3.713 3rd Qu.: : 6.000 3rd Qu.: : 5.000	NPSBrandZ Min. : 1.000 1st Qu.: 5.000 Median : 7.000 Mean : 6.639 3rd Qu.: 9.000 Max. :10.000 SUMMARY()	FAUBrandX Min. : 1.000 1st Qu.: 6.000 Median : 7.000 Mean : 6.894 3rd Qu.: 8.000 Max. :10.000				
Max. :10.000 Max. :10.000 vars n mean sd me NPSBrandX 1 10000 6.63 2.69 NPSBrandY 2 10000 6.53 2.75 NPSBrandZ 3 10000 6.64 2.61 FAUBrandX 4 10000 6.89 1.62 FAUBrandZ 5 10000 5.25 1.85 FAUBrandZ 6 10000 3.71 1.67 se NPSBrandZ 0.03 NPSBrandZ 0.03 NPSBrandZ 0.03 FAUBrandZ 0.02 FAUBrandZ 0.02	dian trimmed mad 8 6.84 1.48 8 6.71 2.97 7 6.87 2.97 7 6.94 1.48 5 5.20 1.48 3 3.58 1.48	1 10 9 -0.58 1 10 9 -0.70 1 10 9 -0.36 1 10 9 0.19	-0.85 -0.98 -0.70 0.16			

summary() gives 1st and 3rd quartiles.

describe() does not deliver quartiles, but gives the values for number of cases (rows), standard deviation, trimmed, mad, skew, kurtosis and standard error.

Both methods give min, max, median and mean.

Covariance

The script is

```
CoVariance.r - Notepad

File Edit Format View Help

# Co-variance matrix

x <- read.table('clipboard', header = TRUE, row.names = 1, sep = '\t', dec = '.')

var(x)
```

Call on the FactAnal table, as

The output is

os. Administra	tor: C:\Windows\	System32\cmd.exe			
	NPSBrandX	NPSBrandY	NPSBrandZ	FAVBrandX	FAVBrandY
NPSBrandX	7.21123087	0.257183418	0.18137264	-0.034729223	0.02583343
NPSBrandY	0.25718342	7.576242064	0.28268567	0.004607561	-0.06442982
NPSBrandZ	0.18137264	0.282685669	6.78775778	0.025256026	0.02010471
	-0.03472922	0.004607561	0.02525603	2.634621212	0.00019957
FAVBrandY	0.02583343	-0.064429823	0.02010471	0.000199570	3.40478999
FAVBrandZ	0.03016797	-0.094270287	-0.01644474	-0.061082258	-0.03382741
	FAVBrandZ				
NPSBrandX	0.03016797				
	-0.09427029				
	-0.01644474				
	-0.06108226				
	-0.03382741				
FAVBrandZ	2.79715331				

Correlation

The top part of the R script is

```
Correlation.r - Notepad

File Edit Format View Help

# Correlation matrix
args <- commandArgs(trailingOnly=T)
print(args)
drive <- args[1]
x <- read.table('clipboard', header = TRUE, row.names = 1, sep = '\t', dec = '.')
#sink(paste(drive, ":\\Ruby\\correlation.txt", sep=''), split=TRUE)
options(width = 9999)  # correlation table could be big...
#cor(x)  # ordinary pearson correlation - no significance
library(Hmisc)  # for rcorr only
rc <- rcorr(as.matrix(x), type="pearson") # needs Hmisc package
#print(rcorr(as.matrix(x), type="pearson"))
#path<-paste(drive, ':\\Ruby\\correlation.txt', sep='')</pre>
```

It is a bit too long to show all of it here. This script shows several techniques: sinkiing the output to a text file (this is commented out), how to call a simple Pearson correlation (commented out), how to call correlation with significance (active), and how to send output to Excel and a PDF.

Call on the FactAnal table, as

🏟 r_FactAnal_	NPS_FAV~Case	🐌 Run RScript 📃 🔀		
Top: sum_NPS - BrandX (1- Z (1-to-10) Side: Case		Procedure © Correspondence Analysis		
Frequencies	NPSBrand NF	Principle Components BiPlot		
	= X	Principle Components ScreePlot		
1	1.00	Cluster Dendrogram		
2	2.00	Cluster Plot		
3	1.00	Interactive K-Means Cluster		
4	2.00	Scale by Z-Score: Target Clusters: 3		
5	8.00	Scale by 2-Scole. Target clusters. 5		
6	2.00	Plot		
7	8.00	Factor Analysis Target Factors: 3		
8	4.00	Summary Stats		
9	8.00	Summary stats		
10	4.00	Co-Variance		
11	5.00	Orrelation		
12	4.00	Pegression Medel		
10	E 00	Regression Model		

The runtime outputs are

Administrator: C:\Windows\System32\cmd.exe
[1] "C" Loading required package: methods Loading required package: grid Loading required package: lattice Loading required package: survival Loading required package: Formula Loading required package: ggplot2
Attaching package: 'Hmisc'
The following objects are masked from 'package:base':
format.pval, round.POSIXt, trunc.POSIXt, units
Loading required package: rJava Loading required package: xlsxjars null device 1
C:\RCodeXE8\Ruby_TMS\Win64\Release>

On closing the Command winbdow, the three correlation tables are displayed in Excel:

	Α	В	С	D	E	F	G
1		NPSBrandX	NPSBrandY	NPSBrandZ	FAVBrandX	FAVBrandY	FAVBrandZ
2	NPSBrandX	1	0.035	0.026	-0.008	0.005	0.007
3	NPSBrandY	0.035	1	0.039	0.001	-0.013	-0.02
4	NPSBrandZ	0.026	0.039	1	0.006	0.004	-0.004
5	FAVBrandX	-0.008	0.001	0.006	1	0	-0.023
6	FAVBrandY	0.005	-0.013	0.004	0	1	-0.011
7	FAVBrandZ	0.007	-0.02	-0.004	-0.023	-0.011	1
8							
	Correlation Frequencies Probabilities + : •					•	

And a series of visualisations are displayed in a PDF:

The box plot shows min, max, median and the 25% and 75% percentiles. Various corrgrams follow. The first is

You would not want all these - coment out unrequired.

Regression Model

For a regression model, we need a table with an independent variable on the left, and the dependent variable(s) on the right.

• Open the supplied table r_RegMod_EDU_INC~Case

The idea is that education drives income, so the first column is EDU.

The R script is

```
RegressionModel.r - Notepad
File Edit Format View Help
# Regression Model
args <- commandArgs(trailingOnly=T)
print(args)
drive <- args[1]
x <- read.table('clipboard', header = TRUE, row.names = 1, sep = '\t', dec = '.')
sink(paste(drive, ":\\Ruby\\RegressionModel.txt", sep=''), split=TRUE)
mod=lm(x[,1]~x[,2])
summary(mod)
sink()
pdf(paste(drive, ":\\Ruby\\RegressionModel.pdf", sep=''))
plot(mod)
dev.off()</pre>
```

Note the use of sink() to 'sink' the outputs to file, and the use of paste() to concatenate strings. The drive letter is passed as an argument.

Run as

The Command Window output is

Administrator: C:\Windows\System32\cmd.exe
[1] "C"
Call: lm(formula = x[, 1] ~ x[, 2])
Residuals: Min 1Q Median 3Q Max -3.0634 -0.4331 -0.4331 0.3568 3.9619
Coefficients: Estimate Std. Error t value Pr(> t >
(Intercept) 0.433052 0.014789 29.28 <2e-16 *** x[, 2] 0.605055 0.005172 116.98 <2e-16 ***
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.018 on 9998 degrees of freedom Multiple R-squared: 0.5778, Adjusted R-squared: 0.5778 F-statistic: 1.368e+04 on 1 and 9998 DF, p-value: < 2.2e-16

The sunk file comprises the above.

On closing the window, a PDF of various diagnostic charts appears.

Anova

The R script is

```
Anova.r - Notepad
File Edit Format View Help
# Anova
x <- read.table('clipboard', header = TRUE, row.names = 1, sep = '\t', dec = '.')
mod=lm(x[,1]~x[,2])
summary(mod)
anova(mod)</pre>
```

Since the parameter for anova() is a linear model, run on the same table as above, as

The output is

Call: Im<formula = x[, 1] ~ x[, 2]) Residuals: Min 1Q Median 3Q Max -3.0634 -0.4331 -0.4331 0.3568 3.9619 Coefficients: Estimate Std. Error t value Pr<>;;;) (Intercept> 0.433052 0.014789 29.28 <2e-16 **** x[, 2] 0.605055 0.005172 116.98 <2e-16 **** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1.018 on 9998 degrees of freedom Multiple R-squared: 0.5778, Adjusted R-squared: 0.5778 F-statistic: 1.368e+04 on 1 and 9998 DF, p-value: < 2.2e-16 Analysis of Variance Table Response: x[, 1] Df Sum Sg Mean Sg F value Pr<>F> x[, 2] 1 14174 14174 13684 < 2.2e-16 **** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

HANDY HINTS

If you have many windows open, occasionally the Run RScript form can end up behind a window. Bringing Ruby to the front should restore visibility.

The Command window content can be selected and copied from here:

If editing and testing or interacting with an R procedure script (for example, commenting in/out the various plot types), then you can use any editor you like, but remember to save the file before starting Run_RScripts.vbs.

For procedures which write PDFs or other files, make sure you close the output files before running again, or else you will get Windows errors. Save anything you want to keep under your own name.

MISCELLANEOUS

You can read Ruby variable case data directly into R like this:

```
x <- read.table("c:/ruby/jobs/demo/casedata/region.cd", header = FALSE)
y <- read.table("c:/ruby/jobs/demo/casedata/gender.cd", header = FALSE)
z <- cbind(x,y)
table(z)</pre>
```

The Ruby equivalent is

Top: Gender

Side	: Region			
Frequencies Corner Net Respondents		Gender		
	=	Males	Females	
	NE	1,255	1,267	
Regi	SE	1,213	1,246	
on	SW	1,230	1,245	
	NW	1,287	1,257	

Uninstall statCONN (if you have it)

The first release of this document relied on statCONN, a third party COM interface to R. Unfortunately, statCONN is now licence-limited, with free usage for non-commercial purposes only.

There were also other problems with the statCONN approach: cumbersome, a difficult installation procedure, slow, hard to edit the COM calls, and so on.

These various issues have been addressed by redesigning the Ruby-R interface to call Rscript.exe directly. The only disadvantage (compared to statCONN) is that the path to Rscript.exe needs to be known up front, and entered manually to the master VBS script.

This document replaces all previous versions.

[end of document]